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Summary: The paper is focused on the results of the numerical simulation of 
crack propagation during a three-point bending test. An effective method is used 
which is based on physical discretisation of the specimen, similar to non-
traditional computational methods such as lattice models or particle models. 

1. Introduction 
Fracture experiments are a common way of obtaining material properties which are necessary 
for quantification of the safety and reliability of a structure. The three-point bending test 
(3PB) of centrally notched beams is often used for this purpose, see Fig. 1. The beam is 
loaded by controlled vertical displacement of the midspan point on the top of the specimen. 
Time series are measured of the action force of the loading machine and the midspan point 
displacement of the beam. The reason for the displacement-controlled loading is the 
requirement of recording the descending part of the load-deflection diagram. 

 
Fig. 1: Three-point bending test on a centrally notched beam 

 

An effective method is used which is based on physical discretisation of the specimen, similar 
to non-traditional computational methods such as lattice models or particle models. The goal 
of using this method is mainly to gain qualitative agreement between real experiments and 
numerical solutions, together with a fast solution (via real-time simulation on a typical 
personal computer). This approach originates from nonlinear dynamical systems theory, 
according to its qualitative criteria and the principle of searching for a minimal degree-of-
freedom system (Arnold 1983). 
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2. Method 
The discrete model of the specimen is composed from mass points. The points contain the 
concentrated mass of the specimen. These points interact among themselves via some type of 
fictive force interaction. This interaction is defined in accordance with two subjects: the 
physical properties of the specimen material and the concept of mass point locations. For the 
modeling of concrete an interaction function with two linear parts and one zero part is used, 
where the symbol u represents the displacement between mass points, see fig. 2. 

 
Fig. 2: Interaction function between mass points 

 

The first linear part corresponds with linear behavior and has a critical point. After this point 
the second linear part continues descending to zero value – the third part. In the descending 
part an unloading branch is used parallel to the linear part. Displacement u is calculated from 
the following relationship: 

  (1) 

where xi, yi are mass point coordinates, vxi, vyi are mass point velocities and l is the original 
distance between the mass points. The numerical model is then formulated using Newtonian 
classical mechanics as a nonlinear dynamical system – a system of ordinary differential 
equations: 

  

  (2) 

 

where m is the weight of mass point, c is the damping coefficient, t is the time and Rxi, Ryi are 
components of the resultant of force interactions. This equation system is solved by basic 
numerical methods (Euler methods, Runge-Kutta methods). 

3. Dynamic behavior of the model 
Two parametric tests were used for model validation: a test of the influence of the speed of 
displacement-controlled loading on the load-deflection diagram, and a test of the influence of 
loading force size on beam behavior. The model is symmetrical except for the position of the 
notch and contains 346 mass points in 11 layers, as well as 954 interaction springs. The 
specimen has height h = 0.23 L (fraction 3/13), where L is the beam span. This span L is 
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approximately 0.87 (fraction 26/30) of the total beam length, see fig. 4. The length of the 
notch is approximately 0.1 h (fraction 1/11). Described interaction function is used with 
uzero = 10 ucrit. 

Load-deflection diagrams 
The first test is focused on displacement-controlled loading in order to obtain load-deflection 
diagrams. In fig. 3 it is possible to see a comparison of diagrams obtained from the model for 
different loading speeds v. The figure shows the monotonous dependency of the maximal 
loading force and work of fracture on the loading speed. The reason for such a dependency is 
the absence of time for the distribution of stress between mass points. 

 

 
Fig. 3: Load-deflection diagrams for different loading speeds v 

 

Note that the model has only 11 layers of mass points, and therefore the load-deflection 
diagrams cannot be sufficiently smooth. The reference load-deflection diagram (signed as ref) 
is approximately quasi-static and has at least 5 typical losses of loading stability due to the 
high stiffness of the notched beam (it is possible to see these as vertical lines in the diagrams). 

Loading by force 
The second test involved loading by force in the middle of the beam. A full-size force is 
placed upon an undamaged and un-deformed beam, and the simulation is started. On Fig. 4 it 
is possible to see classes of characteristic patterns of simulated crack propagation depending 
on the size of the loading force. There are two reference values: force max

refF , corresponding to 
the maximal force from quasi-static loading, see fig. 3, and force Fcrack, which is the 
determined critical force that corresponds with the origin of the crack in dynamic simulation). 
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Fig. 4: Four classes of dynamic behavior of a specimen loaded by force F 
 

There are three nontrivial classes: slow cracking similar to typical quasi-static loading by 
force, fast cracking with the clear formation of a shear wedge, and fast cracking with the total 
destruction of the specimen. Note that critical force Fcrack is lower than max

refF  because a role is 
played by the known high influence of dynamic effects on crack initiation. 

4. Conclusions 
The results of the dynamic simulation of crack propagation in a three-point bended beam were 
presented here. These results were gained by described effective method based on physical 
discretisation of a specimen. Two parametric tests were performed: displacement-controlled 
loading with the purpose of obtaining load deflection diagrams with varying speeds, and 
loading by parametric force. Crack propagation in the model and load-deflection diagrams 
appear to be similar to the results of real experiments. From the loading by parametric force 
four different classes of dynamic behavior of the specimen were discovered. Future work will 
be focused on comparisons with particular experiments for the determination of model 
applicability. 
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a) undamaged 

    (F = 0.63 max
refF = 0.99 Fcrack) 

b) slow cracking 

    (F = 0.64 max
refF = Fcrack) 

c) fast cracking – wedge 

    (F = 3.70 max
refF = 5.83 Fcrack) 

d) fast cracking – destruction 

    (F = 14.8 max
refF = 23.3 Fcrack) 
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