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SIMULATION OF THE STABILITY LOSS
OF THE VON MISES TRUSS

IN AN UNSYMMETRICAL STRESS STATE

Petr Frant́ık*

A hypothesis regarding the dynamical process of stability loss of the high and ideally
symmetrical von Mises truss in a state of unsymmetrical stress is verified by the
simulation of a discrete nonlinear dynamical system. The unsymmetrical stress means
the von Mises truss can possibly gain an unsymmetrical post-critical shape.
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1. Introduction

At the present time, researchers can meet with performing of calculations of highly
complex nonlinear models. Even though the complexity of nonlinear systems is largely
known, the detailed analysis of the solutions found is frequently neglected due to practical
reasons. One general attribute of nonlinear systems is for example the possible presence of
more stable static states which are connected with the presence of unstable static states.
Recognition of the correctness and stability of the solution found is not always a simple
problem for the static solving method.

Fortunately, according to nonlinear systems theory, the complexity of the behaviour
of nonlinear systems can be demonstrated on simple models, thanks to so-called generic
attributes. The von Mises truss is one of these models, see [1]. Its analysis can exhibit
generic attributes which are important for analyses of certain nonlinear systems and of
other truss structures. The von Mises truss is a simple beam structure shown in Fig. 1 along
with descriptive symbols used.

Fig.1: Von Mises truss

Consider a high and ideally symmetrical von Mises truss with two very slender beams
of elastic material. There are many possible static states which could be obtained by the
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deflection/buckling of the beams. The existence of these states was described in detail
in [2], where the occurrence of two kinds of von Mises truss post-critical interaction was
demonstrated : symmetrical and unsymmetrical stress, see Fig. 2.

Fig.2: Possible post-critical states of the truss without symmetrical partners

Symmetrical stress of the von Mises truss is a static state which exists for every value of
the ratio h/L, where h is the height of the von Mises truss and L is the length of its beams,
during which h < L. However, unsymmetrical stress exists for some values of the ratio h/L

only. The minimal height h of the von Mises truss with the presence of unsymmetrical
stress was computed as hmin = 0.5774 L without taking into account normal strain on the
beams (it was assumed that the beams were very slender), see [2]. Moreover, the presence
of unsymmetrical stress is generally limited by the position of the middle hinge, see Fig. 3
for von Mises truss h = 0.8 L.

Fig.3: Dependency of the force F applied to the middle hinge on the vertical displace-
ment w for von Mises truss h = 0.8 L (Fcr is the critical force of the von Mises
truss, i.e. the force necessary for the von Mises truss to lose stability)

The dependency of the force F on the middle hinge position (specified by vertical dis-
placement w, see Fig. 1) for the von Mises truss h = 0.8 L, taken from [2], is shown on
Fig. 3. The diagram shows the end of unsymmetrical stress after achieving a displacement
of approximately wmax = 0.637 h.
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2. Task

As mentioned in the introduction, we shall concentrate on the process of von Mises truss
deflection. For the purpose of simplification we will investigate a von Mises truss where
h = 0.8 L only, and loading will take the form of increments of vertical displacement of the
middle hinge (it is a post-critical task). A special numerical model was created for this
purpose, see Fig. 4.

Fig.4: Scheme of a discrete numerical model of a von Mises truss

The beams of a von Mises truss are divided into a specific number of elements with the
same length. Every element has an inner spring (which allows normal elongation of the
beam). The elements are connected together by hinges with rotational springs. Both types
of springs are considered to be linear :

Fl = kl dl ,

Mf = kf dϕ ,
(1)

where Fl is the internal force in normal spring, Mf is the internal moment in rotational
spring, kl is the stiffness of the normal spring, kf is the stiffness of the rotational spring, dl

is the elongation of the normal spring (elongation of the element), and dϕ is the angular
displacement of the rotational spring (angular displacement between connected elements).

The potential energy Ep which is accumulated within these springs can be written in the
following form :

Ep =
1
2

(
kl

nl∑
i=1

dl2i + kf

nf∑
i=1

dϕ2
i

)
, (2)

where nl is the number of normal springs, nf is the number of rotational springs.

The deformation state of the described von Mises truss model is exactly given by the
positions of each hinge (it is true if |dϕi| < π). The position is specified by the coordinates
(xi, yi), where i is the index of the hinge. For elongation of the normal springs the following
applies :

dli = li − l , li =
√

(xi+1 − xi)2 + (yi+1 − yi)2 , (3)

where l is original length of the element (element without stress) and li is the length of
the element after displacement. For the angular displacement of the rotational springs the
following applies :

dϕi = ϕi+1 − ϕi , sin ϕi =
yi+1 − yi

li
, (4)

where ϕi is the angular displacement of element i (the element between rotational springs i

and i + 1). The equations (3) and (4) are geometrically exact formulations of the model.
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3. Potential energy surface

The described model can be used to investigate the structure of the potential energy
surface of the truss, from which information on the deformational behaviour of the von
Mises truss can be determined. The drawing of the potential energy surface took place
according to the procedure published in the paper [3]. This procedure is based on a search
for extreme values of potential energy Ep (equation (2)) using the Newton iterative method :

1. First we place the von Mises truss in a stable static state discovered, for example, via
using the Newton iterative method. Then we fix the position of the middle hinge.

2. The next step is the ‘small’ shift in the position of the fixed middle hinge, and the finding
of the new extreme value for potential energy using the Newton iterative method.

3. Point two can be repeated as long as is necessary to obtain the position at which we
want to know the value of potential energy. This is followed by the analysis of the state
gained, and the recording of the potential energy value.

The energetic surface obtained by this procedure is shown with the help of transformation
in Fig. 5. The surface is transformed into a dimensionless form due to practical reasons
so that the potential energy symmetrical stress (e.g. the middle hinge undergoes vertical
displacement only; it is the vertical line x = 0.6m in Fig. 5) has a value of 1.00 . The
contours were obtained from the grid of the computed values of potential energy by the
programme Gnuplot [4].

Fig.5: The transformed potential energy surface of the von Mises truss, illustrated by
contours, shown in the plane of the possible positions of the middle hinge

Unsymmetrical stress is recognizable in Fig. 5 as a ‘basin’ at the left and right edges
of the surface (highlighted by bold line). It can therefore be deduced that unsymmetrical
stress is a stable static state throughout the whole period of its existence (see Fig. 3) if the
von Mises truss is loaded by vertical displacement of the fixed middle hinge. On the other
hand, symmetrical stress represented by a vertical line is in this sense a stable static state
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in the interval wstab ∈ (0.48, h), e.g. ystab ∈ (0, 0.32) only (highlighted by solid line), see
Fig. 5. In the ‘upper’ part symmetrical stress is an unstable static state (vertical dashed
line). From the surface shown it is possible to see the existence of the next unstable static
state highlighted by dashed curve, see Fig. 5. The deformed shape of the von Mises truss
when achieving this state is shown in Fig. 6. Its existence indicates that symmetrical and
unsymmetrical stresses are stable static states simultaneously with this newly found unstable
state.

Fig.6: Newly found unstable static state with a small area of existence

From the potential energy surface of the von Mises truss h = 0.8 L on Fig. 5 the following
process of deflection can be deduced: If the von Mises truss is in an initial unstressed state,
then a small vertical displacement of the middle hinge causes buckling into symmetrical
stress, which will transform into unsymmetrical stress due to the asymmetry of the initial
conditions of arbitrary origin. Along the next displacement the von Mises truss will remain
in a state of unsymmetrical stress until the end of the existence of unsymmetrical stress is
achieved (e.g. at a displacement of w = 0.64 h, or at coordinates y = 0.29m). Overstepping
of this point is followed by the fall of unsymmetrical stress into symmetrical stress. Finally,
the von Mises truss will remain in a state of symmetrical stress until displacement w = h,
or to the coordinates y = 0.0m.

4. A dynamical solution

In order to confirm the above-mentioned hypothesis regarding the course of deformation
of a von Mises truss, the given model was formulated as a nonlinear dynamical system. For
the sake of simplicity we can assume the concentration of the mass of the beam in hinges.
Due to this assumption, equations of motion can be derived using the Newton’s law in the
following form :

dxi

dt
= vxi ,

dvxi

dt
=

1
m

(Rxi − c m vxi) ,

dyi

dt
= vyi ,

dvyi

dt
=

1
m

(Ryi − c m vyi) ,

(5)

where c is the damping coefficient, m is the mass of the hinge, vxi, vyi are the velocity vector
components of the hinges and Rxi, Ryi are the vector components of the resultant force Ri

by which the springs act on the hinge. The resultant Ri = f(Fl, Mf), see eq. (1), is the only
nonlinear component featured in equations of motion (5) due to nonlinearity in relation (3)
and (4).
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The confirmation by dynamical solution was carried out in the following way : First, two
beams were created (each one consisting of 8 elements) lying on the axis x, connected by
a middle hinge and supported by the hinge fixed supports on their boundaries. The next
step was the fixation of the middle hinge against the direction of free vertical displacement
(the hinge is on coordinates (1.0, 0.0), see the coordination system in Fig. 4). Then, the right
hinge support was moved in small steps from the initial position x = 2.0m to the position
x = 1.2m, whereby the von Mises truss appears in a postcritical form. The last phase of
the simulation was the slow moving of the middle hinge (fixed in the vertical direction) up
to the coordinates y = 0.8m and back down to the coordinates y = 0.0m. The results of
the simulation are shown on Fig. 7 in the potential energy surface of the von Mises truss.

Fig.7: The transformed potential energy surface of the von Mises truss with
the trajectory of the middle hinge in the dynamical simulation (marked
as a bold line with arrows indicating the direction of movement)

5. Conclusions

Presented in this paper was confirmation of the hypothesis regarding the dynamical
process of stability loss experienced by high and ideally symmetrical von Mises trusses in
the state of unsymmetrical stress brought on in dynamical simulations. The hypothesis was
confirmed by the simulation, during which it was shown that the methods of analysis of
potential energy are certainly well applied and allow the creation of a clear picture of the
characteristics of a simple non-linear system.

The observed properties of von Mises truss are important for recognition of generic
attributes of certain nonlinear systems and of other truss structures. Presented solution can
be used for theoretical analysis of similar problems in technical practice.

A new post-critical solution of the von Mises truss was presented here. The catastrophe
theory can also be used for these purposes, see [5]. The author is interested in this method
and expects its application to occur in the future.
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Java applet of the von Mises truss simulation is available on Internet web page [6]. Using
this applet it is possible to manually repeat the described process of the von Mises truss
deflection.
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